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Enhancement of the temporal growth rate of inviscid three-dimensional instability
waves in free shear layers by deformation of the basic flow is studied. The deformation
of a two-dimensional mixing layer is assumed to yield a base flow that remains
unidirectional, but has a steady spanwise speed variation in addition to the two-
dimensional shear. The computed growth rates for hyperbolic tangent base flow,
perturbed this way, show enhanced instability in the sense that the neutral waves
of the unperturbed flow exhibit positive growth rates. For each imposed spanwise
periodicity, an oblique mode is selected that shows maximum growth rate. The results
are consistent with related theoretical studies and with qualitative observations in
experiments.

1. Introduction
Enhancement of the instability of free shear layers is often desirable. In reacting

flows, such as in a gas turbine combustor, one needs to trigger an early three-
dimensional ‘mixing transition’ of the fuel/air jets to have efficient mixing. Jet exhaust
noise abatement would be promoted by reduction of the jet velocity by enhanced jet
spreading aided by the instability growth.

The mixing layer has an instability due to an inflection point in the velocity profile.
The linear instability manifests itself as an eigenvalue with positive real part, and
the eigenfunction corresponding to the most unstable mode is two-dimensional. The
two-dimensional flow emerging from this instability subsequently suffers a secondary
instability to three-dimensional perturbations. The development of secondary instabil-
ity has been the subject of a number of analytical and computational investigations,
including those of Comte, Lesieur & Lamballais (1992), Corcos & Lin (1984), Pierre-
humbert & Widnall (1982), and Moser & Rogers (1993). Once three-dimensional
perturbations set in, the mixing is rapid (Moser & Rogers 1993).

Our objective here is to analyse a passive forcing mechanism that will enhance
the linearized three-dimensional instability of mixing layers by altering the base
flows to make them spanwise-periodic. Rather than reliance on naturally occurring
disturbances to initiate cross-stream variation, we contemplate imprinting the basic
flow with such a variation, to determine how to enhance the (temporal) instability.

† Present address: Aero/Acoustics/CFD, Mail Stop 163-17, Pratt & Whitney, 400 Main Street,
E. Hartford, CT 06108, USA.
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Our ultimate goal is to be able to ‘design’ the basic flow by appropriate manipulation
so as to lead to the most rapid breakdown of shear layers.

It is experimentally known (Ahuja & Brown 1989 and Zaman 1993, among others)
that passive tabs can alter the stability of shear layers in jets. These tabs mainly
generate streamwise vorticity, producing substantial distortions in the flow field – their
effect is not that of a small perturbation to the shear flow, but rather in reshaping
of it. On the other hand, experiments have been done with indented and corrugated
trailing edges of splitter plates (Lasheras & Choi 1988) to study the effect of small
spanwise-periodic perturbations to the mean flow. One of their main conclusions was
that for large spanwise wavelengths, a wide band of instability waves had comparable
growth rates. No quantitative picture of the mean profile or that of growth rates
were presented, however. Nygaard & Glezer (1991) presented experimental results
for a plane mixing layer forced by a flush-mounted heating mosaic placed near the
trailing edge of the splitter plate. They measured the mean profile and observed
that a spanwise periodicity is induced by this forcing. The authors suggest that
the spanwise periodicity is a result of streamwise vorticity produced by the heating
mosaic. However, it is equally likely that the spanwise periodicity is in the vertical
vorticity, resulting from deformation of the base flow by the heating elements. We
show below that streamwise vorticity can then be generated by the instability of this
perturbed mean flow.

Our method of analysis is similar in spirit to that of Kelly (1967), who modelled
the generation of the sub-harmonic of the primary two-dimensional instability of the
hyperbolic tangent profile, and which has close connections to studies on instability in
boundary layers with longitudinal vortex structures (for example, Hall & Horseman
1991 and Goldstein & Wundrow 1995).

The analysis presented here is of the inviscid linearized instability of a unidirectional
basic flow† that represents an imposed spanwise-periodic distortion of the classical
shear layer (with no longitudinal vorticity). This might be regarded as a generalization
of early work by Hocking (1963) on imposed distortions of a vortex sheet, who also
found that base flow distortions can lead to enhancement of growth rates. The stability
problem for vortex sheets, however, is ill-posed and one is unable to determine finite
preferred growth rates, enhanced or otherwise. Consideration of a finite thickness
for the shear layer is known to remove such difficulties. The analysis can be carried
furthest when the distortion is weak, as measured by a small parameter, δ, defined
later. The amplitude A of the linear instability waves is written as

1

A

dA

dt
= a0 + a1δ + a2δ

2 + · · · .

The coefficients, a1, a2 etc., determine the alteration in linear stability characteristics.
We evaluate these for neutral modes of the base profile, which corresponds to the
case a0 = 0. Wavenumbers corresponding to neutral growth for the base profile are
shown to exhibit non-zero growth rates for the modified profile depending on the
spanwise-periodic deformation of the flow. Our numerical calculations are carried
out for a hyperbolic tangent profile modified by a small-amplitude spanwise-periodic
Gaussian perturbation.

† A referee has brought to our attention the report by Wundrow (1996), who has considered a
similar problem and presented results for spanwise perturbations of a Blasius boundary layer.
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2. Formulation
2.1. Basic flow

We work in Cartesian x = (x1, x2, x3) coordinates, with unit vectors (e1, e2, e3). Flows
with velocity U(x2, x3)e1, are exact solutions of the Euler equations for any U(x2, x3).
Stability analysis of such a flow leads to a non-separable eigenvalue problem for the
Euler equations, linearized about the base flow.

We suppose that the flow downstream of a splitter plate dividing two streams of
differing speeds has been shaped by spanwise arrays of heaters, solid protuberances,
or other methods to yield a flow with velocity U(x2, x3)e1 that is periodic in x3, and
that these devices can be henceforth ignored for the purposes of a temporal stability
analysis. There is no loss in generality in adopting a coordinate system that moves
with the mean speed of the base flow.

The flow is confined between parallel planes at the dimensionless locations x2 = ±h.
Our principal interest is in the “conventional case” for which h→∞.

2.2. Temporal eigenvalue problem

The evolution of the Laplacian of the velocity field U is obtained by taking the curl
of the Navier–Stokes equations twice, yielding

∆

[
∂U

∂t
+U · ∇U − R−1∆U

]
= ∇ [∇ · {U · ∇U}] (2.1)

where ∇ is the three-dimensional Laplacian operator. This equation is exact for
the non-dimensionalized form of full Navier–Stokes equations, and any initially
solenoidal vector U satisfying this set remains solenoidal. The length and velocity
scales are chosen to be L∗ (the vorticity half-thickness of the shear layer) and U∗ (here
taken to be half the speed difference across the mixing layer) respectively. We make
these choices of scales, but continue to use same notation for dimensionless variables.
We are interested in the inviscid case for which the Reynolds number R = U∗L∗/ν is
infinitely large.

The velocity field is linearized about the unidirectional mean shear profile U(x2, x3),

U = U(x2, x3)e1 + u(x, t). (2.2)

Let

∆2 = ∆− ∂2

∂x2
1

be the two-dimensional (x2, x3) Laplacian and ∇2 be the corresponding two-dimensional
gradient. Substituting (2.2) into (2.1), setting R = ∞, and linearizing gives

∆

{(
∂

∂t
+U

∂

∂x1

)
u+ (u · ∇2U) e1

}
= 2

∂

∂x1

∇ {u · ∇2U} , (2.3)

where continuity has been used.
The components of equation (2.3) in the plane normal to e1 do not involve the

u1 component. We therefore consider only the pair of equations in this crossplane,
and construct u1 later using continuity. If we denote the two-dimensional vector
(u2, u3) = v, then the components of (2.3) in the (x2, x3)-plane may be written com-
pactly as

∂∆v

∂t
− ∂L(U)v

∂x1

= 0. (2.4)
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We now suppose that the distortion of the basic flow is weak, as measured by a
small parameter δ. In the following, we study the effects of the particular distortion

U(x2, x3) = U0(x2) + 2δU1(x2) cos(βx3). (2.5)

The linearized operator L(U) in (2.4) depends on the parameter δ and can be
expanded as

L(U) = L0 + δL1,

prompting the corresponding expansion for v,

v = v(0) + δv(1) + δ2v(2) + · · · .
At the lowest order (O(1)), we find

∂∆v(0)

∂t
− ∂L0v

(0)

∂x1

= 0 (2.6)

where

L0 =

 U ′′0 −U0∆ 0

2U ′0D −U ′′0 −U0∆− 2U ′0D

 ,

where a prime represents the derivative of a function of a single variable with respect
to its argument, and where we also introduce D = ∂(·)/∂x2.

The problem posed at this order is the usual stability problem for the two-
dimensional parallel flow U0(x2), leading to the Rayleigh equation.

At O(δ),

∂∆v(1)

∂t
− ∂L0v

(1)

∂x1

=
∂

∂x1

[
(eiβx3L1 + e−iβx3L∗1)v

(0)
]
. (2.7)

Here

L1 =


U ′′1 −U1

[
∆− β2 + 2iβ

∂

∂x3

]
2iβ[U1D+U ′1]

2U ′1

[
∂

∂x3

+ iβ

]
−U ′′1 −U1∆− β2U1 − 2U ′1D

 ,

and L∗1 is its complex conjugate. In general, the equations at O(δq) are of the form

∂∆v(q)

∂t
− ∂L0v

(q)

∂x1

=
∂

∂x1

[
(eiβx3L1 + e−iβx3L∗1)v

(q−1)
]

(2.8)

and the problems posed for the v(q) can be solved sequentially. We will need to
apply L1 to vectors of normal mode form, so for later reference we note that if

f = f̂(x2)e
i(`x1+mx3) then

L1f = ei(`x1+mx3)L̂1(`, m)f̂, (2.9)

where

L̂1(`, m) =

 U ′′1 +U1

(
(m+β)2 +`2−D2

)
2iβ[U1D+U ′1]

2iU ′1[m+β] −U ′′1 −U1

(D2 +β2−`2−m2
)−2U ′1D

 ,

(2.10)
and L̂∗1(`, m) is obtained by changing the sign of β.
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2.3. Boundary conditions

A discussion of the boundary conditions and the domain for which (2.8) is to be
solved is relevant here to rationalize the present analysis about the neutral mode of
the base profile.

Theoretical works on the stability of mixing layers commonly begin by perturbation
centred on the neutral modes. When the flow domain is unbounded, and the fluid
is treated as inviscid, the flow is unstable. The significance of the analysis about a
neutral mode is therefore unclear. This awkward issue is seldom discussed in the
literature.

We address this issue by formulating our problem for a mixing layer for which
the growth rate of the linearly most unstable mode can be controlled. This can be
accomplished by confining the mixing layer between plane walls located at x2 = ±h,
where h is a finite length, leading to a ‘ducted mixing layer’.

In this case, even though the necessary criteria of Rayleigh (1880) and Fjørtøft
(1950) allow for instability, the inflectional flow is inviscidly stable for sufficiently
small h. The maximum growth rate, σmax for any two-dimensional mixing layer profile
is a function of h, and marginal stability obtains for a specific value h = h∗. Results
of calculations for a tanh(x2) ducted shear layer are presented in the Appendix.

When the shear layer is placed in a channel of non-dimensional height 2h, the
boundary conditions at |x2| = h are

u
(q)
2 = 0 =

∂

∂x2

[(
∂

∂t
+U0

∂

∂x1

)
u

(q)
3

]
(2.11)

which comes from u
(q)
2 = 0 together with the momentum equations and their x2

derivative at the boundary, and the continuity equation.

3. Stability analysis
We begin by exploring the stability characteristics of a ducted shear layer. The

results for an unbounded mixing layer will be obtained by letting h→ ∞ in the next
section.

At the lowest order, the equation for the normal modes of u(0)
2 is not coupled to that

for u(0)
3 , and presents the problem for the stability of the flow without x3 dependence.

It is known that the least stable solution for this equation is independent of x3. Thus
u

(0)
2 is determined by equation (2.6). Adopting a normal form representation and

denoting complex conjugation terms by c.c.

u
(0)
2 = û

(0)
2 (x2)e

ik(x1−ct)+iγx3 + c.c.

where k and γ are streamwise and spanwise wavenumbers, (2.6) reduces to the
Rayleigh equation for û(0)

2 (x2),

D2û
(0)
2 − κ2û

(0)
2 − û(0)

2

U ′′0
U0 − c = 0 (3.1)

where κ2 = k2 + γ2 is the magnitude of the wavenumber vector, κ = ke1 + γe2. Since
our focus is on temporal stability, we regard k and γ as real, and c as an eigenvalue
to be determined.

For a monotonic U0 with an inflection point, any neutral mode solutions of (3.1)
will be regular. We suppose that h is large enough for a neutral mode to exist, with
wavenumber κ. The equation for the normal mode form for the spanwise component
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u
(0)
3 is found from (2.6), and leads to an equation analogous to the Rayleigh equation,

U0(D2û
(0)
3 − κ2û

(0)
3 ) +U ′′0 û

(0)
3 + 2U ′0D̂u(0)

3 = 2iγU ′0û
(0)
2 . (3.2)

This may be recast for W (0) = U0û
(0)
3 as

D2W (0) − κ2W (0) = 2iγU ′0û
(0)
2 (3.3)

with DW (0) = 0 at x2 = |h|.
The solution of (3.3) for non-zero γ is

W (0) = − 2iγ

κ sinh(2κh)

∫ h

−h
R(η)G(x2, η)dη, (3.4)

where

R(x2) = U ′0û
(0)
2 ,

G(x2, η) =

{
cosh κ(x2 − h) cosh κ(η + h), η < x2

cosh κ(x2 + h) cosh κ(η − h), η > x2.

This shows that û(0)
3 = W (0)/U0 is purely imaginary. It is singular at the critical level

x2 = yc = 0 for γ 6= 0, whereas û(0)
2 is smooth everywhere. For plane waves, γ = 0, and

the solution is W (0) = e−|κ|x2 , which is now real but û(0)
3 is still singular at the critical

level. This singularity compounds at higher order, and u2, which is non-singular at
lowest order, is singular at higher order since û(0)

3 appears in the source terms for
(2.7). These singularities become increasingly severe at higher orders. The usual way
of getting around this is to reintroduce viscosity in a thin layer across yc (e.g. Maslowe
1986). Alternatively, the critical layer singularity may be resolved by retaining the
vestige of time dependence. We will adopt the latter approach to calculate the singular
quantities using the standard complex analysis without resorting to the analytically
more complicated viscous critical layer theories.

3.1. The effect of spanwise periodicity

We assume that by confining the shear layer we are able to control the maximum
growth rates of the zeroth-order eigenmodes to near-neutral values. Once these modes
have been obtained, our next task is to determine whether the deformation of the
base flow has any effect on them.

To this end, we sequentially consider (2.8) with q = 1, 2, . . . . Although the eigen-
modes do not interact with each other in our linear analysis, one can think of this
problem as a wave-interaction problem, with the perturbation wavy modes interacting
with the imposed spanwise-periodic base flow deformation acting as a ‘pump wave’,
so that the problem at O(δ2) may be thought of as a three-wave interaction (Craik
1985).

We start with (2.7) with known right-hand side v̂(0)
i . A solution is possible if the

non-homogeneous terms are orthogonal to the solution of the homogeneous adjoint
problem (Ince 1956). We therefore find the solution (denoted by Φ) to the adjoint
equation to the steady form of (2.6). We then take the inner product of this adjoint
solution with (2.7) and ensure that the right-hand side of the product vanishes.

3.2. The adjoint equation

The adjoint operator is defined as (Φ, Lu) = (LadΦ, u) where (f, g) = 〈f·g∗〉 =
∫
V
f·g∗dV

is the inner product of f and g (and the asterisk represents complex conjugation).
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The adjoint equations to the steady form of (2.6) are

∆[U0φ] + 2U ′0
∂χ

∂x3

−U ′′0φ = 0, (3.5)

∆[U0χ]− 2U ′0Dχ−U ′′0χ = 0, (3.6)

where the inner product of Φ = (φ, χ) with the right-hand side of (2.6) vanishes for
the following boundary conditions on Φ:

φ = 0 at x2 = |h|
and

D (χ/U0

)
= 0 at x2 = |h|.

With

Φ = Φ̂(x2)e
ik′x1+iγ′x3 + c.c.

we have

D2
(
U0φ̂

)
− κ2

(
U0φ̂

)
− U ′′0
U0

(
U0φ̂

)
=−2iγU ′0χ̂,

U0

(D2χ̂− κ2χ̂
)

= 0.

 (3.7)

The first of these equations is an inhomogeneous Rayleigh equation for [U0φ̂]
forced by the term −2iγU ′0χ̂. We start with the equation for χ̂. With the exception
of special values of the height h and wavenumber κ satisfying either of the two
conditions (i) tanh(κh) = U ′0(h)/κU0(h) and (ii) tanh(κh) = κU0(h)/U

′
0(h), there is

no smooth non-zero solution. Case (i) leads to χ̂ = A cosh(κx2) and Case (ii) to
χ̂ = A sinh(κx2) for arbitrary constant A. Otherwise, the solution of the adjoint is the
generalized function arising from the solution of either D2χ̂ − κ2χ̂ = δ(x2) or χ̂ = 0,

so that [U0φ̂] satisfies the homogeneous Rayleigh equation. We adopt the principle of
least singularity, which implies that χ̂ = 0 is the required solution. Since the boundary

conditions for [U0φ̂] are also the same as those for û(0)
2 , we have U0φ̂ = û

(0)
2 and(

k′2 + γ′2
)1/2

=
(
k2 + γ2

)1/2
. Since û

(0)
2 6= 0 in general, the adjoint φ̂ = û

(0)
2 /U0 is

singular at the critical level yc.
Since the left-hand side of equations (2.8) at all higher orders is the same, the above

adjoint solution is valid for the whole set.

3.3. Analysis at O(δ)

We now analyse the two-wave interaction involving the steady mean perturbation
with the neutral wave of the base profile. The spanwise and streamwise wavenumbers

of the latter are such that
(
k2 + γ2

)1/2
= κ where κ is given by the O(1) analysis.

Taking the inner product of Φ with the equation for v(1)
i (2.7), we get

∂(Φ,∆v(1))

∂t
=

(
Φ, eiβx3

∂L1v
(0)

∂x1

)
− dA

dT1

(
Φ,∆[v̂(0)eiκ·x]

)
+ c.c. (3.8)

In writing (2.7), A is an amplitude function, and the need for slow time scales has
been anticipated, so that the lowest-order solution is

v(0) = A(T1, T2, . . .)v̂
(0)(x2)e

i(kx1+γx3)

where the Tn = δnt are slow time scales introduced to suppress the appearance of
secular terms in the expansion and the time derivative expands in the usual way in
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terms of the fast time t and the slow times Tn. With these expansions, the first term
on the right-hand side of (3.8) is found to vanish by periodicity unless γ′ = γ+ β and
k = k′, which is not possible for non-zero β since k2 + γ2 = k′2 + γ′2 = κ2. Therefore,
we do not get an amplitude equation at this order unless the mean flow perturbation
is spanwise invariant (β = 0). The solutions for v(1)

i , which represent the eigenmode
perturbation in response to the base flow perturbation, are determined by

∂∆v(1)

∂t
− ∂L0v

(1)

∂x1

=
∂

∂x1

[
eiβx3L1v

(0)
]

+ c.c. (3.9)

The right-hand side of this equation is ikAei[kx1+(γ+β)x3]L̂1v̂
(0) + c.c. There is a steady

solution for v(1) of the form

v(1) = Av̂(1)(x2)e
ikx1+i(γ+β)x3 + c.c.

An explicit solution of this equation is found in a subsequent section for the case
of h→∞.

3.4. Analysis at O(δ2)

From a conceptual viewpoint, this stage of analysis is similar to the three-wave
interaction analysis with the mean perturbation providing the two steady ‘waves’ that
interact with the neutral wave of the base flow. Now, the equation for v(2), from (2.8),
is

∂∆v(2)

∂t
− ∂L0v

(2)

∂x1

=
∂

∂x1

[
(eiβx3L1 + e−iβx3L∗1)v

(1)
]− ∂∆v(0)

∂T2

, (3.10)

where T2 = δ2t. Now, consider the right-hand side of the equation for u(2)
i , keeping

in mind that u(1)
i = Aû

(1)
i eikx1+i(β+γ)x3 . The terms on the right-hand side of (3.10) that

involve the streamwise derivative (∂/∂x1) are

ikAeiκ·X
[
e2iβx3 L̂1(k, γ)v̂

(1) + L̂∗1(k, γ)v̂
(1)
]

−ikA∗e−iκ·X
[
e−2iβx3 L̂∗1(−k,−γ)v̂(1)∗ + L̂1(−k,−γ)v̂(1)∗

]
.

Taking the inner product of (3.10) with the solution of the adjoint problem (Φ =
Φ̂(x2)e

(ik′x1+iγ′x3)), and requiring the right-hand side to vanish, yields the condition

dA∗

dT2

〈Φ̂ · (D2 − κ2)v̂(0)∗〉 = −ikA∗〈Φ̂ · [L̂∗1(k, γ)v̂(1)]∗〉 (3.11)

whose complex conjugate is

dA

dT2

〈Φ̂∗ · (D2 − κ2)v̂(0)〉 = −ikA〈Φ̂∗ · [L̂∗1(k, γ)v̂(1)]〉.

Recalling that Φ = (φ, 0), the condition (3.11), that ensures non-secularity of the
solution, becomes

dA

dT2

∫ h

−h
Φ̂
∗ ·(D2−κ2)v̂(0)dx2 = ikA

∫ h

−h
Φ̂
∗ ·[{D2U1 +U1(κ

2−D2)}u(1)
2 −2iβDU1u

(1)
3 ]dx2.
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Therefore,

1

A

dA

dT2

=

ik

∫ h

−h
φ̂∗[{D2U1 +U1(κ

2 −D2)}u(1)
2 − 2iβD(U1u

(1)
3 )]dx2∫ h

−h
(|û(0)

2 |2D2U0)/U
2
0 dx2

, (3.12)

where the denominator is simplified using (3.1). The amplitude equation will show an
enhanced growth rate if (3.12) has a positive real part. It would now be possible to fix
β and formulate a variational problem to maximize (3.12) to determine an optimum
shape of U1(x2) or, conversely, to fix the shape of mean flow perturbations and find
the value of β which gives the maximum linear growth rate.

4. Calculations for the hyperbolic tangent profile
The most common case of a shear profile with an inflection point, representing two

streams of different speeds meeting downstream of a splitter plate, is the hyperbolic
tangent profile with h→∞. The temporal instability curve of such a profile was first
obtained by Michalke (1964). Our aim here is to show that a neutral wave of tanhx2

profile for h = ∞ can be destabilized when the basic flow is deformed appropriately.
Here we choose base flow deformation amplitude variation in (2.5) to be

U1(x2) = e−x
2
2/s. (4.1)

Note that a negative value of δ in (2.5) implies perturbation due to periodic wakes
shed by, for example, a periodic array of tabs whose size scales with the parameter s
and which cause a maximum velocity defect of magnitude δ that occurs at the critical
level of the base flow. A positive value of δ will correspond to an array of jets with
similar interpretations for the parameters.

Before evaluating the effect of the mean perturbation, we shall report the solution
of the three-dimensional Rayleigh’s equations (3.1) and (3.2). The neutral wave has
κ = 1 and the eigenfunctions are given by

û
(0)
2 = sech x2, û

(0)
3 = iγ (sinh x2)

−1 .

The solution to the adjoint equations (3.7) have Fourier components:

φ̂ = (sinh x2)
−1 , χ̂ = 0.

At O(δ), the governing equations, after some manipulation, may be written as{
U0(D2 − α2)−D2U0

}
û

(1)
2 = 2iβD(U1û

(0)
3 ) +

{D2U1 +U1(α
2 −D2)

}
û

(0)
2 , (4.2){

U0(D2 − α2) + 2(DU0)D+D2U0

}
û

(1)
3 = 2i(γ + β){(DU0)û

(1)
2 + (DU1)û

(0)
2 }

−{D2U1 +U1

(
β2 +D2 − κ2

)
+ 2(DU1)D} u(0)

3 , (4.3)

where α2 = k2 + (γ + β)2. The differential operators in (4.2) and (4.3) have a regular
singular point at the critical level x2 = 0, and the forcing on the right-hand sides
involves terms known from O(1) analysis. Clearly, û(1)

2 may be taken to be purely

real and û
(1)
3 purely imaginary for γ 6= 0. The spanwise component is more singular

than the vertical component, the latter having the same singularity as the spanwise
component at the previous order. The solutions were computed using a value of the
parameter s = 0.06, which our subsequent considerations indicate is suitable.
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Figure 1. Fourier components of (a) the normal and (b) spanwise amplitude functions resulting
from O(δ) analysis (i.e. solutions of equations (4.2) and (4.3)). The functions have been regularized
by multiplying them with appropriate powers of U0. Here βL∗ = 0.75, and γL∗ = 0 (2-D mode);
- - - - -, γL∗ = 0.003; —— , γL∗ = 1.35; · · · · · · , γL∗ = 1.95; ——, γL∗ = 2.70.

Define the wave obliqueness to be θ = tan−1(γ/k), the angle between the wavenum-
ber vector of the perturbation and the direction (x1) of the basic flow. The solutions
of (4.2) and (4.3) (‘regularized’ by multiplying with an appropriate power of U0) are
plotted in figures 1 and 2 for two different values of imposed spanwise periodicity.
For βL∗ = 0.75, the vertical component of the oblique mode is shown in figure
1(a) for various values of the spanwise wavenumber γ. The shapes of this mode for
different values of γ vary only slightly across the width of the shear layer, and exhibit
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Figure 2 (a, b). Same as figure 1 but for βL∗ = 7.5.

behaviour similar to the plane-wave mode shown by the solid line. The spanwise
mode, shown in figure 1(b), is more sensitive to the obliqueness angle, and the nega-
tive peak value arising in this mode increases monotonically with increasing spanwise
wavenumber. Note that streamwise vorticity ω1 = [Dû3 − iγû2] ei(kx1+γx3−ct) has been
generated although the imposed vorticity had no streamwise component.

In contrast to the case resulting for βL∗ = 0.75, for βL∗ = 7.5, both the vertical
and spanwise components are sensitive to three-dimensional effects, as may be seen
in figure (2a, b). While the two-dimensional mode has the same shape and similar
magnitude across the width as in βL∗ = 0.75 case, the three-dimensional modes show
an order of magnitude larger values at the critical level. There is little difference
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Figure 3. Growth rate enhancements (I1/I2; normalized by its value when γ → 0 and β → 0)
plotted against imposed spanwise periodicity (β) for different spanwise wavenumbers or oblique
modes: γL∗ = 0 (2-D mode); - - - - - , γL∗ = 0.003; −.−.−, γL∗ = 1.35; · · · · · · , γL∗ = 1.95; —— ,
γL∗ = 2.70; −..−..−, γL∗ = 3.00.

in the behaviour near x2 = 0 in figures 1(b) and 2(b), which respectively give the
shape of the spanwise mode for βL∗ = 0.75 and βL∗ = 7.5. Although results for
other β values are not included here, as the imposed spanwise wavenumber increases
the vertical component grows, but the spanwise component remains unaltered near
x2 = 0. Consequently, the changes in the streamwise and normal vorticity at the
critical level, that occur as βL∗ increases, will not be due to the spanwise perturbation
component arising from the instability.

We now have the quantities needed to evaluate the integrals (3.12). The worst
singularity in the kernel of I1 is a pole of order four. We integrate along a contour
in the complex-x2 plane that lies below the singularity. Enhanced instability results
when the real part of I1/I2 is positive. The results of growth rates are presented in
figures 3 and 4 for various values of β and γ. The growth rate in these figures is
normalized by its value for the plane waves (γ = 0) for the particular case when
there is no periodicity in the imposed perturbation (i.e. β = 0). Figure 3 suggests that
the plane waves show no appreciable change in the growth rates for the range of β
values plotted. The oblique waves, on the other hand, have monotonically increasing
growth rates as β increases. At β = 0, the inviscid version of Squire’s theorem
holds, and the two-dimensional mode is the most amplified one. Away from this
point, the mean flow is no longer two-dimensional and the theorem does not hold,
and higher growth rates are found here for at least some of the three-dimensional
modes. To each oblique mode, it is possible to assign a β = βc above which it
shows enhanced instability. A wide range of oblique modes exhibit this behaviour
for relatively small values of β. At large β values (the meaning of ‘large’ is not
determined here since the present study is linear in the instability wave magnitude),
the growth rates will be modified by diffusive and nonlinear effects that have been
ignored here.
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Figure 4. Growth rate enhancements (I1/I2; normalized by its value when γ → 0 and β → 0)
plotted against instability-wave obliqueness angle (θ = tan−1(γ/k)) from the streamwise direction
for different spanwise periodicities (β values): βL∗ = 0 (2-D shear layer); - - - - -, βL∗ = 2.4; −.−.−,
βL∗ = 4.8; · · · · · · , βL∗ = 7.2; ——, βL∗ = 9.6; −..−..−, βL∗ = 12.0.
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Figure 5. Most amplified modes, θm = tan−1(γ/k) corresponding to maximum value of
(I1/I2) for each β.

Figure 4 plots the same growth rate results against spanwise wavenumber γ,
emphasizing the obliqueness effects. There is no preferred mode for sufficiently small
β, in qualitative agreement with the experimental findings of Lasheras & Choi (1988).
At larger values of β, there is clearly a preferred mode. Figure 5 plots the values of γ
for the most amplified mode for each β. It is noted that, in the absence of viscous and
nonlinear effects, the wavenumber γ of the most amplified mode tends to asymptote
for large values of β.
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Figure 6. Growth rate enhancement (normalized I1/I2) variation with the vertical size parameter
of the mean flow deformation (see equation (4.1)). - - - - -, βL∗ = 4.0; −.− .−, βL∗ = 8.0; · · · · · ·,
βL∗ = 12.0.

The vertical length scale of the spanwise base flow deformation is determined by
the parameter s. Figure 6 plots the growth rate for various values of β, maximized
over γ in each case, as a function of s. The choice of s anticipates that the growth rate
enhancement scales with the gradient of the basic flow, and there the deformation
from a two-dimensional shear is effected in a vertical length of O(s1/2). An interesting
feature of this plot is that the growth rate asymptotes for large s values. The limit of
large s and large spacing (small β) corresponds to having imposed no deformation
at all, i.e. no enhanced growth. The plot also shows that smaller values of s have
exponentially large returns. However, viscous effects ignored in the analysis limit how
small s can be. The value of s selected in this paper was 0.06, based on considerations
to be given below. Note that the magnitude δ and scale s of the base flow deformation
are independent parameters. For example, if one thinks of the base flow deformation
as being created by suction or blowing, δ measures the level of suction or blowing
applied by slotted orifices with vertical extent measured by s.

Ignoring the diffusive terms, expected to be due to turbulent fluctuations, in
the stability equations imposes constraints on the applicability of the analysis. The
dimensionless eddy diffusivity in a turbulent flow is of order u′`/VL∗, where u′ is
the r.m.s. speed and ` is the integral length scale. Consequently, diffusive effects will
contribute terms of order (u′`/VL∗)(β2L2∗). This parameter should be neglegibly small
for the present analysis to be valid. This will be the case when βL∗ � (VL∗/u′`)1/2.
For example, if the integral length scale of turbulence is 20% of the shear layer half-
thickness and turbulence intensity is typically 2%, then there is a high-wavenumber
viscous cutoff for βL∗ greater than about 16. Consequently, the spanwise placement
of the flow manipulators should not be any closer than about 20% of the shear layer
thickness. A similar consideration results in the constraint that s should not be much
smaller than L2∗/125. This corresponds to s > 0.06 for L∗ = 3 (in figure 6).
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5. Discussion
The analysis indicates that it is possible to modify the growth rate of the neutral

modes of an inflectional base flow by adding a small, steady, spanwise-periodic, defor-
mation having only a streamwise component. This kind of base flow modification does
not involve adding streamwise vorticity to the flow, but rather introduces vorticity
components, ω2 and ω3, normal to the direction of the base flow. In the unperturbed
base flow, there is no net vortex line deformation. Rotation of the ω2 vorticity compo-
nent by the shear ∂U/∂x2 is nullified by a rotation of the spanwise vorticity component
ω3 by the spanwise shear ∂U/∂x3. This balance is undone when the base flow is per-
turbed, and streamwise vorticity is generated due to the interaction between the neutral
wave of the base profile and the imposed spanwise deformation of the base flow.

Although we have demonstrated enhanced instability by a perturbation analysis for
weak O(δ) spanwise variations of the base flow, leading to an increase in growth rate
of O(δ2), we believe it virtually certain that enhanced instability will persist to O(1)
spanwise variations of the base flow. A Floquet analysis is required for such cases,
which permits the mean flow deformation to be arbitrarily large, and of arbitrary
spanwise variation, in contrast to the sinusoidal variation required in the present
analysis. This allows the consideration of more localized distortions. We anticipate
that the growth rate enhancement can be substantial, and we hope to present those
results in a follow-up paper.

The numerical calculations in this paper were carried out for the case of a hyperbolic
tangent profile deformed by spanwise-periodic Gaussian profiles concentrated on the
critical level of the base flow. We find positive growth rates for the neutral modes of the
original flow above a particular imposed wavenumber β. Oblique and plane waves
have qualitatively different behaviours as β increases, in that the two-dimensional
waves remain largely unaffected as β increases but the three-dimensional waves show
enhanced growth rates. Experimental observations by Lasheras & Choi (1988) in the
limit of large base flow deformation wavelength (small β) show no preferred mode of
amplified disturbances, which is consistent with our results. The estimates in the pre-
vious section suggest that it should be possible to realize the enhancement in practice.

We have shown that above a certain value of β a preferred oblique mode with
maximum growth rate exists at each imposed periodicity. However, the β values at
which the most amplified mode becomes independent of β are quite high. It is unlikely
that such high imposed wavenumbers are realizable in practice without considering the
diffusive and nonlinear effects. Therefore, there is probably no universally preferred
mode for the present situation. Each initial condition determines which oblique mode
will be most amplified.

This research was supported through a Phase 2 NASA-SBIR, contract no. NAS1-
20408, monitored by Dr Jack Seiner. We gratefully acknowledge Dr Seiner for
introducing us to the problem and for his many contributions.

Appendix. The neutrally stable ducted shear layer

For finite height of unperturbed hyperbolic shear layer, the problem for û(0)
2 must

be solved numerically. For the neutral case, this reduces to

D2û
(0)
2 − κ2û

(0)
2 − û(0)

2

D2U(0)

U(0)
= 0 (A 1)
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with the following boundary conditions:

û
(0)
2 (−h) = 0 = û

(0)
2 (h).

Since −D2U(0)/U(0) = 2 sech2x2 in our case and the problem is a standard Sturm–
Liouville eigenvalue problem (with eigenvalue κ2), we know that a solution will not
exist for a positive eigenvalue if

π2/(2h∗)2 > 2 or h∗ < π/2
√

2

= 1.12.

Rayleigh’s equation for neutral modes was also solved numerically for different
values of h. The effect of confinement of the shear layer is to reduce the growth rates,
most notably at low wavenumbers as one would expect. It was found that as the
thickness of the shear layer was reduced, the typical wavenumbers of the band of
most amplified waves increased and then gradually became smaller – an intriguing
result. No instability could be found for κ2 below h∗ = 1.15. This is consistent with
(in fact, quite close to) the above lower bound of 1.12.
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